
Sponsored by:

This story appeared on JavaWorld at
http://www.javaworld.com/javaworld/jw-05-2005/jw-0516-lego.html

A neural network for Java Lego robots

Learn to program intelligent Lego Mindstorms robots with Java

By Julio César Sandria Reynoso, JavaWorld.com, 05/16/05

Developers can build intelligent robots with Java, as it provides APIs for programming
systems that can see, hear, speak, move, and even learn, using neural networks, which
are algorithms that mimic our brain. (Please see "Futurama: Using Java Technology to
Build Robots That Can See, Hear, Speak, and Move," by Steve Meloan (Sun Developer
Network, July 2003).)

This article shows how to develop a robot that can learn by using the backpropagation
algorithm, a basic neural network, and implementing it on a Lego Roverbot. Using both
the algorithm and Java, the Roverbot—a Lego robot vehicle—can learn some basic rules
for moving forward, backward, left, and right.

In this article, we use the Lego Mindstorms Robotics Invention System 2.0 for building the
Lego robot; leJOS 2.1.0, a little Java operating system for downloading and running Java
programs inside the Roverbot; and J2SE for compiling the Java programs under leJOS.

Lego robots

The Lego Mindstorms Robotics Invention System (RIS) is a kit for building and
programming Lego robots. It has 718 Lego bricks including two motors, two touch
sensors, one light sensor, an infrared tower, and a robot brain called the RCX.

The RCX is a large brick that contains a microcontroller and an infrared port. You can
attach the kit's two motors (as well as a third motor) and three sensors by snapping wire
bricks on the RCX. The infrared port allows the RCX to communicate with your desktop
computer through the infrared tower.

In this article, we use a Roverbot as it is constructed in the Lego Mindstorms
Constructopedia, the guide for constructing robots. This Roverbot, as shown in Figure 1,
has been configured to use all three sensors and two motors included in Lego Mindstorms
RIS 2.0.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

1 von 15 01.02.2012 11:52

Figure 1. A Lego Roverbot with two touch sensors, one light sensor, and two
motors

leJOS

leJOS is a small Java-based operating system for the Lego Mindstorms RCX. Because the
RCX contains just 32 KB of RAM, only a small subset of the JVM and APIs can be
implemented on the RCX. leJOS includes just a few commonly used Java classes from
java.lang, java.io, and java.util, and thus fits well on the RCX.

You must load the RAM with the Lego firmware, or, in our case, with the leJOS firmware,
and your programs. The firmware contains a bytecode interpreter, which can run
programs downloaded from RCX code.

For setting up your leJOS installation, please take a look at Jonathan Knudsen's article
"Imaginations Run Wild with Java Lego Robots," (JavaWorld, February 2001), Programming
Lego Mindstorms with Java (Syngress Publishing, 2002), or the leJOS readme file
contained in the leJOS zip file, which you can download from the leJOS homepage.

Neural networks

If we want to build intelligent machines, we should model the human brain. Early in the
1940s, the neurophysiologist Warren McCulloch and the mathematician Walter Pitts
began working on the idea of building an intelligent machine out of artificial neurons. One
of the earliest neural network models was the perceptron, an invention of F. Rosenblat in
1962. A perceptron can learn; it models a neuron by taking a weighted sum of its inputs
and sending an output of 1 if the sum is greater than some adjustable threshold value,
otherwise it sends 0. If a perceptron can compute, it can learn to compute. Figure 2
shows a neuron and Figure 3 shows a perceptron.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

2 von 15 01.02.2012 11:52

Figure 2. A neuron

Figure 3. A perceptron

The inputs (x1, x2, x3, ..., xn) and connection weights (w1, w2, w3, ..., wn) in the figure are
typically real values. If the presence of some feature xi tends to cause the perceptron to
fire, the weight wi will be positive; if the feature xi inhibits the perceptron, the weight wi
will be negative. As Elaine Rich and Kevin Knight note in their book Artificial Intelligence
(McGraw-Hill, 1990), "the perceptron itself consists of the weights, the summation
processor, and the adjustable threshold processor. Learning is a process of modifying the
values of the weights and the threshold." The authors recommend implementing the
threshold as another weight w0 because this weight can be thought of as the propensity
of the perceptron to fire irrespective of its input.

Backpropagation networks

A backpropagation network is a fully connected, layered, and feed-forward neural
network (see Figure 4). Network activation flows in one direction only: from the input
layer to the output layer, passing through the hidden layer. Each unit in a layer is
connected in the forward direction to every unit in the next layer. Weights between units
encode the network's knowledge.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

3 von 15 01.02.2012 11:52

Figure 4. A backpropagation network

A backpropagation network usually starts with a random set of connection weights. The
network adjusts its weights based on some learning rules each time it sees a pair of
input-output vectors. Each pair of vectors goes through two stages of activation: a
forward pass and a backward pass. The forward pass involves presenting a sample input
to the network and letting activations flow until they reach the output layer. During the
backward pass, the network's actual output (from the forward pass) is compared with the
target output, and errors are computed for the output units. The weights connected to
the output units can be adjusted to reduce those errors. The error estimates of the output
units are then used to derive error estimates for the units in the hidden layers. Finally,
errors are propagated back to the connections stemming from the input units.

After each round of forward-backward passes, the system "learns" incrementally from the
input-output pair and reduces the difference (error) between the network's predicted
output and the actual output. After extensive training, the network will eventually
establish the input-output relationships through the adjusted weights on the network.

The backpropagation algorithm

Given a set of input-output vector pairs, you can compute a set of weights for a neural
network that maps inputs onto corresponding outputs.

Let A be the number of units in the input layer, as determined by the length of the
training input vectors. Let C be the number of units in the output layer. Now choose B,
the number of units in the hidden layer. As shown in Figure 4, the input and hidden layers
each have an extra unit used for thresholding; therefore, the units in these layers will
sometimes be indexed by the ranges (0,...,A) and (0,..., B). We denote the activation
levels of the units in the input layer by xj, in the hidden layer by hj, and in the output
layer by oj. Weights connecting the input layer to the hidden layer are denoted by w1ij,
where the subscript i indexes the input units and j indexes the hidden units. Likewise,
weights connecting the hidden layer to the output layer are denoted by w2ij, with i
indexing hidden units and j indexing output units.

The backpropagation algorithm has the following steps:

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

4 von 15 01.02.2012 11:52

Initialize the network weights. Initially, all connection weights are set randomly to
numbers between -0.1 and 0.1:

w1ij = random(-0.1, 0.1) for all i = 0, ..., A, j = 1, ..., B
w2ij = random(-0.1, 0.1) for all i = 0, ..., B, j = 1, ..., C

1.

Initialize the activations of the threshold units. For each layer, its threshold unit is
set to 1 and should never change:

x0 = 1.0
h0 = 1.0

2.

Choose an input-output pair. Suppose the input vector is xi and the target output
vector is yi. Assign activation levels to the input units.

3.

Propagate the activations from the units in the input layer to the units in the hidden
layer using the activation function:

for all j = 1, ..., B

Note that i ranges from 0 to A. w1oj is the thresholding weight for hidden unit j. x0 is
always 1.0.

4.

Propagate the activations from the units in the hidden layer to the units in the
output layer:

for all j = 1, ..., C

Again, the thresholding w2oj for output units j plays a role in the weighted
summation. h0 is always 1.0.

5.

Compute the errors of the units in the output layer, denoted δ2j. Errors are based on
the network's actual output (oj) and the target output (yj):

δ2j = oj (1 - oj) (yj - oj) for all j = 1, ..., C

6.

Compute the errors of the units in the hidden layer, denoted δ1j:7.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

5 von 15 01.02.2012 11:52

for all j = 1, ..., B

Adjust the weights between the hidden layer and output layer. The learning rate is
denoted η; its function is the same as in perceptron learning. A reasonable value of
η is 0.35:

Δw2ij = η δ2j hi for all i = 0, ..., B, j = 1, ..., C

8.

Adjust the weights between the input layer and the hidden layer:

Δw1ij = η δ1j xi for all i = 0, ..., A, j = 1, ..., B

9.

Go to Step 4 and repeat. When all the input-output pairs have been presented to the
network, one epoch has been completed. Repeat Steps 4 to 10 for as many epochs
as desired.

10.

The activation function has a sigmoid shape. Since infinite weights would be required for
the actual outputs of the network to reach 0.0 and 1.0, binary target outputs (the yj's of
Steps 4 and 7 above) are usually given as 0.1 and 0.9 instead. The sigmoid is required by
backpropagation because the derivation of the weight update rule requires that the
activation function be continuous and differentiable.

The Lego Mindstorms backpropagation network

We want to model a backpropagation network for our Roverbot (Figure 5). The robot has
three inputs (two touch sensors and one light sensor) and two outputs (the two motors).
So, we can use a three-layer backpropagation network as shown in Figure 6, where we
change the unit index to begin with 0; recall the use of index in Java arrays.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

6 von 15 01.02.2012 11:52

Figure 5. The roverbot to model

Figure 6. The backpropagation network

Note: The use of a three-layered network and three units in the hidden layer is just an
arbitrary decision influenced by teaching purposes.

To define input-output vector pairs for use in the backpropagation network, from the

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

7 von 15 01.02.2012 11:52

robot input-output (sensor-motor), we must identify what the robot is going to learn. We
define four basic behavior rules:

Moving forward: If Sensor 1 is off, and Sensor 2 is over a white floor, and Sensor 3 is
off, then Motor A and Motor C go forward (Roverbot goes forward)
Moving right: If Sensor 1 is on, then Motor A goes forward, and Motor C goes
backward (Roverbot turns right)
Moving left: If Sensor 3 is on, then Motor A goes backward, and Motor C goes
forward (Roverbot turns left)
Moving backward: If Sensor 2 is over a black floor, then Motor A and Motor C go
backward (Roverbot goes backward)

We translate these rules to training examples for the backpropagation network as shown
in Figures 7 and 8, where S1 = Sensor 1, M-A = Motor A, and so on.

Figure 7. Rules

Figure 8. Training examples

The input-output vector pairs are the examples we use to train the backpropagation
network. So, based on its sensor states, our robot will learn to move forward, right, left,
and backward. But what would happen if both touch sensors were on? The robot would
not learn that case (rule or example), but the backpropagation network would give it an
emergent behavior.

What emergent behavior? Will the robot go forward, backward, left, or right? You will get
the answer by compiling the program, downloading it to the RCX, and pressing the Run

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

8 von 15 01.02.2012 11:52

button to run the program and see the robot behavior.

The Java classes

To implement the backpropagation algorithm, divide the code into two Java classes:

Class LMpbn, where you encapsulate all features of the backpropagation algorithm:

Properties, like public arrays:

 input []
 hidden []
 output []
 w1 [][]
 w2 [][]

Methods:

 train(...)
 test(...)

Note that this is a generic class, so, you can use it in any leJOS program and in any
other Java program.

Listing 1. The LMbpn class

/**

 * <p>Title: Lego Mindstorms Neural Networks</p>
 *
 * @author Julio César Sandria Reynoso
 * @version 1.0
 *
 * Created on 1 de abril de 2005, 06:09 PM
 */

import java.lang.Math;

/**
 * LMbpn: Lego Mindstorms Back Propagation Network
 */
class LMbpn {
 public static int data1[][] = {{0,0,0}, {1,1}};
 public static int data2[][] = {{1,0,0}, {1,0}};
 public static int data3[][] = {{0,0,1}, {0,1}};
 public static int data4[][] = {{0,1,0}, {0,0}};

 public static double input[] = {0,0,0,1};
 public static double w1[][] = {{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}};
 public static double hidden[] = {0,0,1};
 public static double w2[][] = {{0,0}, {0,0}, {0,0}};

1.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

9 von 15 01.02.2012 11:52

 public static double output[] = {0,0};
 public static double delta2[] = {0,0};
 public static double delta1[] = {0,0,0};

 public static int trainedEpochs = 0;

 LMbpn() {
 byte i, j;
 // Initialize weights randomly between 0.1 and 0.9
 for(i=0; i<w1.length; i++)
 for(j=0; j<w1[i].length; j++)
 w1[i][j] = Math.random()*0.8+0.1;

 for(i=0; i<w2.length; i++)
 for(j=0; j<w2[i].length; j++)
 w2[i][j] = Math.random()*0.8+0.1;
 }

 public static void train(int e) {
 for(int i=0; i<e; i++) {
 // Call method learn with training data
 learn(data1[0], data1[1]);
 learn(data2[0], data2[1]);
 learn(data3[0], data3[1]);
 learn(data4[0], data4[1]);
 trainedEpochs++;
 }
 }

 public static void learn(int inp[], int out[]) {
 int i, j;
 double sum, out_j;

 // Initialize input units
 for(i=0; i<inp.length; i++)
 input[i] = inp[i];

 // Calculate hidden units
 for(j=0; j<hidden.length-1; j++) {
 sum = 0;
 for(i=0; i<input.length; i++)
 sum = sum + w1[i][j]*input[i];

 hidden[j] = 1 / (1 + Math.exp(-sum));
 }

 // Calculate output units
 for(j=0; j<output.length; j++) {
 sum = 0;
 for(i=0; i<hidden.length; i++)
 sum = sum + w2[i][j]*hidden[i];

 output[j] = 1 / (1 + Math.exp(-sum));
 }

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

10 von 15 01.02.2012 11:52

 // Calculate delta2 errors
 for(j=0; j<output.length; j++) {
 if(out[j] == 0)
 out_j = 0.1;
 else if(out[j] == 1)
 out_j = 0.9;
 else
 out_j = out[j];
 delta2[j] = output[j]*(1-output[j])*(out_j-output[j]);
 }

 // Calculate delta1 errors
 for(j=0; j<hidden.length; j++) {
 sum = 0;
 for(i=0; i<output.length; i++)
 sum = sum + delta2[i]*w2[j][i];

 delta1[j] = hidden[j]*(1-hidden[j])*sum;
 }

 // Adjust weights w2
 for(i=0; i<hidden.length; i++)
 for(j=0; j<output.length; j++)
 w2[i][j] = w2[i][j] + 0.35*delta2[j]*hidden[i];

 // Adjust weights w1
 for(i=0; i<input.length; i++)
 for(j=0; j<hidden.length; j++)
 w1[i][j] = w1[i][j] + 0.35*delta1[j]*input[i];
 }

 public static void test(int inp[], int out[]) {
 int i, j;
 double sum;

 // Initialize input units
 for(i=0; i<inp.length; i++)
 input[i] = inp[i];

 // Calculate hidden units
 for(j=0; j<hidden.length-1; j++) {
 sum = 0;
 for(i=0; i<input.length; i++)
 sum = sum + w1[i][j]*input[i];

 hidden[j] = 1 / (1 + Math.exp(-sum));
 }

 // Calculate output units
 for(j=0; j<output.length; j++) {

 sum = 0;
 for(i=0; i<hidden.length; i++)
 sum = sum + w2[i][j]*hidden[i];

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

11 von 15 01.02.2012 11:52

 output[j] = 1 / (1 + Math.exp(-sum));
 }

 // Assign output to param out[]
 for(i=0; i<output.length; i++)
 if(output[i] >= 0.5)
 out[i] = 1;
 else
 out[i] = 0;
 }
}

Class LMbpnDemoRCX: A demo program for the RCX, where you implement the use of the
LMbpn class:

 ...
 main() {
 LMbpn bpn = new LMbpn();
 ...
 bpn.train(...);
 ...
 bpn.test(...);
 ...
 }

Listing 2. The LMbpnDemoRcx class

import josx.platform.rcx.LCD;
import josx.platform.rcx.TextLCD;
import josx.platform.rcx.Sound;
import josx.platform.rcx.Sensor;
import josx.platform.rcx.SensorConstants;
import josx.platform.rcx.Motor;
import josx.platform.rcx.Button;

public class LMbpnDemoRcx {
 public static LMbpn bpn = new LMbpn();

 public static void main(String args[]) throws InterruptedException
 {

 int i, white;
 int inp[] = {0,0,0};
 int out[] = {0,0};

 Sound.beep();
 TextLCD.print("Train");

 // Train bpn 500 epochs, sit down and wait about 5 minutes!

2.

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

12 von 15 01.02.2012 11:52

 for(i=0;i<500;i++) {
 bpn.train(1);
 LCD.showNumber(bpn.trainedEpochs);
 }

 Sensor.S1.setTypeAndMode (SensorConstants.SENSOR_TYPE_TOUCH,
 SensorConstants.SENSOR_MODE_BOOL);

 Sensor.S2.setTypeAndMode (SensorConstants.SENSOR_TYPE_LIGHT,
 SensorConstants.SENSOR_MODE_RAW);

 Sensor.S3.setTypeAndMode (SensorConstants.SENSOR_TYPE_TOUCH,
 SensorConstants.SENSOR_MODE_BOOL);

 Sound.twoBeeps();
 Sensor.S2.activate();
 white = Sensor.S2.readRawValue();

 Motor.A.setPower(1);
 Motor.C.setPower(1);

 Sound.twoBeeps();

 while(!Button.PRGM.isPressed()) {

 LCD.showNumber(Sensor.S2.readRawValue());

 if(Sensor.S1.readBooleanValue())
 inp[0] = 1; // Sensor 1 on
 else
 inp[0] = 0; // Sensor 1 off

 if(Sensor.S2.readRawValue() > white + 50)
 inp[1] = 1; // Sensor 2 over black floor
 else
 inp[1] = 0; // Sensor 2 over white floor

 if(Sensor.S3.readBooleanValue())
 inp[2] = 1; // Sensor 3 on
 else
 inp[2] = 0; // Sensor 3 off

 bpn.test(inp, out);

 if(out[0] == 1)
 Motor.A.forward();
 else
 Motor.A.backward();

 if(out[1] == 1)
 Motor.C.forward();
 else
 Motor.C.backward();

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

13 von 15 01.02.2012 11:52

 Thread.sleep(500);

 } // while()

 Sensor.S2.passivate();
 Motor.A.stop();
 Motor.C.stop();
 Sound.beep();

 } // main()

} // class LMbpn

First, you must instantiate an object from class LMbpn. After that, you must train the
backpropagation network with a certain number of epochs. Finally, you test the network
with current sensor states.

Compile and run

To compile the classes and run your program, first, install leJOS and some environment
variables in a command window. Compile classes with the commands:

lejosc LMbpn.java
lejosc LMbpnDemoRcx.java

Download your program to the RCX using:

lejos LMbpnDemoRcx

And run your program by pressing the RCX's Run button.

This example trains the backpropagation network in 500 epochs, which takes about five
minutes in the RCX. You could train the network on a personal computer (that takes less
than five seconds), save the weights calculated, and assign these weights instead of
initializing them randomly.

Conclusion

Lego Mindstorms robots are cool toys used by hobbyists all around the world. They prove
suitable for building mobile robots and programming them with artificial intelligence. The
backpropagation network described in this article was implemented as a Java class to

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

14 von 15 01.02.2012 11:52

build an intelligent Lego robot that can learn a basic behavior. With some more work, you
can program more complex behavior with this neural network. Finally, such a class is a
reusable Java class that can be modified and used in any other Java-based system.

About the author

Julio C�sar Sandria Reynoso is software developer at the Instituto de Ecolog�a, A.C., and
professor of computer programming and artificial intelligence at the Universidad de
Xalapa, in Xalapa City, Mexico. He has a master's of science in artificial intelligence and
has worked with Java since 1998.

All contents copyright 1995-2012 Java World, Inc. http://www.javaworld.com

http://www.javaworld.com/javaworld/jw-05-2005/jw-0516... http://www.javaworld.com/cgi-bin/mailto/x_java.cgi?page...

15 von 15 01.02.2012 11:52

